Preuves Interactives
et Applications

Burkhart Wolff

http://www.lri.fr/ ~wol ff/teach-material /2020-2021/M2-CSMR

Université Paris-Saclay

Foundations: A-calculus

1/4/21 B. Wolff - M2 - PIA 1

Motivation: Why ITP* ?

*)Interactive Theorem Proving

e Enormous Versatility of Proof Problems :

* Mathematics : 4 color theorem, Kepler conjecture,

Feit-Thompson conjecture. . .

 Theoretical Informatics :

* Formal proofs of algorithms

* Program Language Semantics,

* Soundness of Type-Systems
* Engineering (Practical Informatics):

 Back-end for other provers (certifying proof traces),

» Discharging Proof Obligations in Program Verification

« SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS

« CompCert (Coq, Inria), optimising C compiler

e ... much stuff in Phd-thesis and the literature ...

1/4/21 B. Wolff - MI1-PIA A-Calculus

Plan of this Course: , A-calculus”

» Untyped A - Terms
e Conversions and Reductions

* The typed A-calculus

* Properties

* Encoding Logics in the typed \-calculus
 What is , natural deduction” ?

1/4/21 B. Wolff - MI1-PIA A-Calculus

Foundations:
Untyped A-Terms

1/4/21 B. Wolff - MI1-PIA A-Calculus

Background: The A-calculus

* Developed in the 30ies by
Alonzo Church (and his
students Kleene and Rosser)

* ... To develop a representation
of Whitehead's and Russel's
,Principia Mathematica”

* ... was early on detected as

.‘n
Turing-complete and actually

a “functional computation model” (Turing)

1/4/21 B. Wolff - MI1-PIA A-Calculus

The Terms of the (pure) A-calculus

- A-terms T are built (inductively) over:

*V, a set of “variable symbols”

* \V. T, a term construction called
“A—abstraction” ,

*TT, a term construction called

"application”

« A version adding a set of constant
symbols is called , the applied A-calculus

1/4/21 B. Wolff - MI1-PIA A-Calculus

The A-calculus: Notation

This produces expressions like:

(AX.AY.(AZ.(AX.Z X) (Ay.z Y)) (X Y))

parenthesis can be dropped:
((f X) y) is written just fxy

f(x) is written just fx.

1/4/21 B. Wolff - MI1-PIA

A-Calculus

The A-calculus: Binding

The most important aspect of ,variables" are that
they ,,stand for something”, i.e. they can be
,Substituted” by something.

A key-motivation for the A-calculus is that key-ideas
of binding and scoping of variables (as occurring
mathematics and programming languages) should

be treated correctly.

A—abstractions build a scope: in AX. X X, X appears
“bound”. If a variable occurrence in not bound, is
called "free”.

1/4/21 B. Wolff - MI1-PIA A-Calculus

The A-calculus : Binding

Example:

= e

(AX.AY.(Az.(Ax.z @) (Ay.z y)) (X Y))

The free variables can be computed recursively: |

« free(x) = {x} for any x €
o free(TT') =free(T)u free(T’)
« free(Ax. T) =1free(T) \ {x}

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

Bound variables can be arbitrarily renamed, provided

that this does not “capture” a free variable (make it
bound).

This is reflected by the notion of
a-conversion (written «).

Example:

(AX.AY.(Az.(AX.z @) (Ay.2z Y)) (X Y)) <
)

(AX.Ay.(Az.(A\y.z @) (Ay.z y)) (X Y))
but not:

(AX. Ay. (Az. (Aa. za) (Ay. zy)) (xV))

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

Free-ness of variables and «_ Together
give a notion of capture-free substitution.

e X|Xi=r|]=r
ylx:=r] =y
(t s)[x:=r] = (t[x:=r])(s[x:=1])
(AX. H[x:=r] = AX.t
(Ay. t[x:=r] = Ay.(t[x:=r]) ifx#yandyisnotin
the free variables of r.

The variable y is said to be "fresh" for r.

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

Example:

e Ax.X)[y:=y] = Ax.(X[y:=y]) = Ax.X
* (Axy)x)[x:=y] = (Ax.y)[x:=yDEX[x:=y]) = (AX.y)(y)

Counterexample (ignoring freshness condition) :
(AX. y)[y:=x] = Ax.(yly:=Xx]) = AXx. X
Corrected Example:

(Ax. Yly:=x] = (Az. y)ly:=x] = (Az. x)
so we would convert a constant function into an identity ...

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

The "Motor” of the A-ccilculus: the
B-conversion (written <—>B) or its one-

directional version, the B-reduction
(written —>B).

It captures the notion of applying a
function by substitution of its arguments:
e (AXx.) E <—>B t[x:=E]
e (AMx.) E —>B t[x:=E]

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

The n-conversion (written <—>n) or its one-directional

version, the n-reduction (written —>n) captures the

notion of extensionality on functions:

(Ax.f X) (_)n f where x does not occur free in f

All conversions/reductions are congruences, i.e. can be
applied to any sub-term.

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

Example:
Ag. (Ax.g (x X)) (AX.g (x X)) (which we will abbreviate Y)

Now consider:

Y f
= (M. (Ax.h (x X)) (Ax.h (x x))) £

—>B (AX.f (x X)) (Ax.f (x x))
_)B f ((Ax.f (x X)) (Ax.f (x x)))
= f (Y f)

A combinator with this property Y £ = £ (Y f)
is called fixpoint combinator.

1/4/21 B. Wolff - MI1-PIA A-Calculus

Computations

Example (Church Numerals):

0 = ANf.AX. X

1 = Nf.Ax.f Xx

2 = Nf.Ax.f (f Xx)

3 = ANf.Ax.f (f (f x))

SUCC = An.Af.Ax. T (n f x)

PLUS = Axm.An.Af.Ax.m £ (n f Xx)
Consider:
PLUS 2 3 — 5

B

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

Example (Boolean Logics):

TRUE = AX.Ay.X
FALSE = AX.Ay.y (Note that FALSE is equivalent to the Church numeral zero defined before)

AND = Ap.ANg.p g p

OR = Ap.Ag.p P g

NOT = Ap.p FALSE TRUE
IFTHENELSE = Ap.Ma.Ab. p a b

Consider:

*
AND TRUE FALSE _)B FALSE

1/4/21 B. Wolff - MI1-PIA A-Calculus

Substitution and Conversions

Example (Recursive Function):

FAC = Afac. An. IFTHENELSE (ISZERO n)

(1)
(MULT n (fac(PRED n)))

Y = Af. (Ax. f£(x x)) (Ax. f£(x x))

Consider:
(Y FAC) 4 —> 24

1/4/21 B. Wolff - MI1-PIA A-Calculus

The untyped A-calculus

Theoretical Properties (Pure/Applied)

®* it is “a universal language” (i.e. it has the same

computational power than, say, Turing Machines
* there may be calculations that ,diverge” (loop)
* it is Church-Rosser: a

(for * be B reductions,
On-conversions) |

* the equality on A-terms is undecidable.
* the difference between "Pure” and “"Applied” irrelevant

1/4/21 B. Wolff - MI1-PIA A-Calculus

Foundations:
Typed A-Terms

1/4/21 B. Wolff - MI1-PIA A-Calculus

The typed A-calculus

Motivation:

* a term - language for representing maths

(with quantifiers, integrals, limits and stuff -
thus: variables with binding.)
in a logic [seminal paper by Church in 1940]

* no divergence admissible
[what would a ,divergent term™ mean in a logic ?]

 equality on terms decidable
* turned out to be easy to implement.

1/4/21 B. Wolff - MI1-PIA A-Calculus

1/4/21

The typed A-calculus

Idea:

* we use an applied A-calculus

(and constant symbols will be subtly
different from variables in the typed A)

* we infroduce the syntactic category of types

* we require all ,legal” terms to be typed,
l.e. an association of a term to a type
according to typing rules must be possible.

* Typed ferms were defined inductively.

B. Wolff - MI1-PIA

A-Calculus

The typed A-calculus

(Applied) A-terms T
are built (inductively) over:

*V, a set of “variable symbols”

* C, a set of “constant symbols”

* \V. T, a term construction called
“A—abstraction”

*TT, a term construction called

“application”

1/4/21 B. Wolff - MI1-PIA

A-Calculus

The typed A-calculus
Types (1):

* We assume a set of type constructors y with
symbols like bool, nat, int, list, set, = , ...

* We assume a set of type variables TV for af.y...

* The set of types 7 is inductively defined:
= TV x(v e T)

1/4/21 B. Wolff - MI1-PIA A-Calculus

The typed A-calculus

Types (2):

* We assume a set of type constructors y with
symbols like bool, nat, int, list, set, = , ...

* For type constructors (and constant symbols),
we will allow infix/circumfix notation:

we will write:

nat for nat()

bool for bool()

nat list for (list_)(nat)

bool = nat for (_=_)(boal, nat)

1/4/21 B. Wolff - MI1-PIA A-Calculus

The typed A-calculus

Types (3):
* We assume constant environment which
assigns each constant symbol a type:

2..Cep1
* We assume a variable-environment which
assigns to each variable symbol a type:

I : Ve

(we write I' = {a~t , brt, ChT, 1)

1/4/21 B. Wolff - MI1-PIA A-Calculus

The typed A-calculus

Types (4):

°* A type judgement stating that a term
t has type T in environments 2 and I':

2. T+ttt

® .. and a set of inductive type inference

rules establishing type judgements.

1/4/21 B. Wolff - MI1-PIA

A-Calculus

The typed A-calculus

* Type Inferences:

Y,k 0 (X ¢) . I'Fx; o I x5

YIFE:r=717 Y THE =7
ITFEE @7

Y A{x; = 7}WTHE 7
Y. IFX, Eor=1

1/4/21 B. Wolff - MI1-PIA A-Calculus

The typed A-calculus

* Note that constant syfnbols where treated
slightly different than variable symbols:

* constant symbols may be instantiated
(the type variables may be substituted via 6)

* a constant symbol may therefore have
different types in a term.

1/4/21 B. Wolff - MI1-PIA A-Calculus

Typed A-calculus

e We assume

2. = {0~ nat, 1 » nat, 2 » nat, 3 » nat,

Suc e~ nat=nat, + +» nat=nat=nat,

_=_wp a=0=bool, True » bool, False » bool}

1/4/21 B. Wolff - MI1-PIA A-Calculus

Typed A-calculus

» Example:
does Ax. x + 3 have a type, and which one ?

Y, {z = nat} F (_+) = nat = nat = nat ¥, {x — nat} F x :: nat
Yoz - nath - (C+)(x) = nat = nat Y, {x — nat} 3 nat
YAz nattW{}Fz+3:nat
Y, {} F Az.z+ 3 nat = nat

1/4/21 B. Wolff - MI1-PIA A-Calculus

Revisions: Typed A-calculus

» Examples:
Are there variable environments p such that the
following terms are typable in X:
(note the infix notation: we write 0 + x for “ + ” 0 x%)

e (+ 0)=(Sucx)
 (x+y)=(y+x)) = False

« f(+ 0)=(Ac.gc)X

e + z(+ (SucO0))= (0+fFalse)
e a+b=(True =c)

1/4/21 B. Wolff - MI1-PIA A-Calculus

1/4/21

Revisions: P-reduction

Assume that we want to find typed solutions for
7X, 7Y, 7Z such that the following terms become
equivalent modulo a-conversion and -reduction:

— 7Xa =7= a+ 7Y
— (Mhc.go) =7= (Mx.?Y X)
— (Mc.?Xc)a =7= 7Y
— Aa.(Mc.Xc)a == (Ax.7Y)
Note: Variables like ?X, ?Y, ?Z are called schematic

variables; they play a major role in Isabelles Rule-
Instantiation Mechanism

Are solutions for schematic variables always unique ?

B. Wolff - M1-PIA A-Calculus

The typed A-calculus

Theoretical Properties (without proof)

* the congruence

t (_)GBH t

is decidable (reduce to B-normalform, expand to

n-longform, rename vars via a in some canonical order)

* Systems like Coq, Isabelle, HOL4 can use
(some form of) typed A-calculi as universal term-
representation with binding operators such as v, 3,

sums, integrals, ...

1/4/21 B. Wolff - MI1-PIA A-Calculus

The typed A-calculus

Theoretical Properties (without proof)

®* The type inference problem is decidable, i.e. for
2,7t ?7?

there is an algorithm that finds solutions for ? and ?? if existing.
* the difference between "Pure” and "Applied” is relevant for typing

e M. (Ax.f(x x)) (Ax.f(x x)) is untypable

* Beta-reduction is terminating, i.e. there is always an
irreducible t’ for any t such that:

t >t

8
1/4/21 B. Wolff - M1-PIA A-Calculus

Application:

Encoding a Simple Logic
in typed A-Terms

Pure in Typed A-calculus

* We assume for a minimal logic:

2 Pure = { _ = __ b prop = prop = prop,
=_ B O=0= prop,

A_._ p (a=prop)= prop}

where we will equivalently write
NAx.P for A_._(A\x.P). (Quantifier notation)

1/4/21 B. Wolff - MI1-PIA A-Calculus

HOL in Typed A-calculus

* We assume for Higher-Order Logic:

2HOL = 2Pure W

{ Trueprop » bool = prop,

True » bool, False » bool,
A b bool=bool=bool, v_» bool=bool=bool,

—— _ bool = bool = bool, =~ bool = bool,

= wmo=0= bool,

Y_. » (a=bool)= bool,

1. » (a=bool)= bool }

1/4/21 B. Wolff - MI1-PIA A-Calculus

Outlook: representing Rules

2J An Inference System for the equality operator
(or "HO Equational Logic”) looks like this:

(s=t)prop (r=s)prop (s=t)prop
(s=s)prop (t = s)prop (r = t)prop

(s =t)prop (P(s))prop
where T 18 fresh (P(t))prop

(s(z) =t(z))prop
(s =t)prop

(Prop is Trueprop and the bar corresponds to A = B).

1/4/21 B. Wolff - MI1-PIA A-Calculus

Natural Deduction

2 With a nicer pretty-printing this looks like this:

s=1 r=s8 s=1
r =2 = s r =t
/\a:.s:c:t:c s—t P
Szt Pt

(equality on functions as above (“extensional equality”) is
an HO principle, and it is a principle in a “classical” HOL).

1/4/21 B. Wolff - MI1-PIA A-Calculus

Conclusion

- Typed A-calculus is a rich term language for the

representation of logics, logical rules, and logical
derivations (proofs)

-+ On the basis of typed A-calculus,

- Higher-order logic (HOL) is fairly easy to represent

- The differences to first-order logic (FOL)
are actually tiny.

1/4/21 B. Wolff - MI1-PIA A-Calculus

