
B. Wolff - M2 - PIA 1

Preuves Interactives  
et Applications


 
Foundations: λ-calculus

Université Paris-Saclay 

Burkhart Wolff 

http://www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR

1/4/21



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Motivation: Why ITP* ? 
*)Interactive Theorem Proving

● Enormous Versatility of Proof Problems :

• Mathematics :  4 color theorem, Kepler conjecture,  
          Feit-Thompson conjecture. . .

• Theoretical Informatics :


• Formal proofs of algorithms

• Program Language Semantics, 

• Soundness of Type-Systems


• Engineering (Practical Informatics):

• Back-end for other provers (certifying proof traces),

• Discharging Proof Obligations in Program Verification

• SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS

• CompCert (Coq, Inria), optimising C compiler


• … much stuff in Phd-thesis and the literature ...



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Plan of this Course: „λ-calculus“ 
 

• Untyped λ - Terms

• Conversions and Reductions

• The typed λ-calculus

• Properties

• Encoding Logics in the typed λ-calculus

• What is „natural deduction“ ?



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

  
Foundations:


Untyped λ-Terms 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Background: The λ-calculus 
• Developed in the 30ies by  
  Alonzo Church (and his  
  students Kleene and Rosser)

• ... to develop a representation

 of Whitehead‘s and Russel‘s 
  „Principia Mathematica“

• ... was early on detected as 
  Turing-complete and actually 
  a “functional computation model“ (Turing)



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The Terms of the (pure) λ-calculus 
●  λ-terms T are built (inductively) over: 

• V, a set of “variable symbols”

• λV. T, a term construction called 
“λ−abstraction” ,


• T T , a term construction called 
“application“


• A version adding a set of constant  
symbols is called „the applied λ−calculus“



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The λ-calculus: Notation 
 This produces expressions like: 
 
      (λx.λy.(λz.(λx.z x) (λy.z y)) (x y))

 
parenthesis can be dropped:  
 
      ((f x) y)     is written just  f x y 

 
   f(x)         is written just  f x.




1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The λ-calculus: Binding 
The most important aspect of „variables“ are that  
they „stand for something“, i.e. they can be  
„substituted“ by something. 

A key-motivation for the λ−calculus is that key-ideas  
of binding and scoping of variables (as occurring 

mathematics and programming languages) should  
be treated correctly. 
 
λ−abstractions build a scope: in λx. x x, x appears  
“bound”. If a variable occurrence in not bound, is  
called ”free”. 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The λ-calculus : Binding 
 Example:


 (λx.λy.(λz.(λx.z a) (λy.z y)) (x y)) 
 

 The free variables can be computed recursively: 

• free(x)       = {x} 	             for any x ∈

• free(T T’)   = free(T) ∪ free(T’) 

• free(λx. T) = free(T) \ {x}  



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 
Bound variables can be arbitrarily renamed, provided 
that this does not “capture” a free variable (make it 
bound).

This is reflected by the notion of  
      α-conversion (written ↔α). 
Example:


(λx.λy.(λz.(λx.z a) (λy.z y)) (x y)) ↔α   
(λx.λy.(λz.(λy.z a) (λy.z y)) (x y))  

but not: 
(λx. λy. (λz. (λa. z a) (λy. z y)) (x y)) 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 
Free-ness of variables and ↔α together     

   give a notion of capture-free substitution.

•  x[x:=r] = r

•  y[x:=r] = y

• (t s)[x:=r] = (t[x:=r])(s[x:=r])

• (λx. t)[x:=r] = λx.t

• (λy. t)[x:=r] = λy.(t[x:=r])    if x ≠ y and y is not in  

		 	 	 	 	   the free variables of r. 


• The variable y  is said to be  "fresh" for r.



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 
Example:

• (λx.x)[y:=y] = λx.(x[y:=y]) = λx.x

• ((λx.y)x)[x:=y] = ((λx.y)[x:=y])(x[x:=y]) = (λx.y)(y)  

Counterexample (ignoring freshness condition) :  
	(λx. y)[y:=x]  =  λx.(y[y:=x])  =  λx. x 

Corrected Example:

(λx. y)[y:=x]   =  (λz. y)[y:=x] = (λz. x)

so we would convert a constant function into an identity …



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 
 The “Motor” of the λ-calculus: the 
 β-conversion (written ↔β) or its one-  
 directional version, the β-reduction  
 (written →β). 

 It captures the notion of applying a  
 function by substitution of its arguments:


• (λx.t) E ↔β t[x:=E]


• (λx.t) E →β t[x:=E]




1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 

The η-conversion (written ↔η) or its one-directional 
version, the η-reduction (written →η) captures the 
notion of extensionality on functions: 

    (λx.f x)  ↔η f       where x does not occur free in f

 

All conversions/reductions are congruences, i.e. can be 
applied to any sub-term.



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 
Example: 

λg.(λx.g (x x)) (λx.g (x x))    (which we will abbreviate Y) 
 
Now consider:

 Y f

≡	 (λh.(λx.h (x x)) (λx.h (x x))) f


→β 	 (λx.f (x x)) (λx.f (x x))


→β f ((λx.f (x x)) (λx.f (x x)))


≡ f (Y f) 


A combinator with this property   Y f = f (Y f) 
is called fixpoint combinator.



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Computations
Example (Church Numerals): 

0 ≡ λf.λx. x   

1 ≡ λf.λx.f x

2 ≡ λf.λx.f (f x)

3 ≡ λf.λx.f (f (f x))

...


SUCC ≡ λn.λf.λx.f (n f x)


PLUS ≡ λm.λn.λf.λx.m f (n f x) 
 

Consider: 
 PLUS 2 3    →β*   5



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 

Example (Boolean Logics): 

    TRUE ≡ λx.λy.x

  FALSE ≡ λx.λy.y          (Note that FALSE is equivalent to the Church numeral zero defined before)

     AND ≡ λp.λq.p q p

  OR ≡ λp.λq.p p q

  NOT ≡ λp.p FALSE TRUE

  IFTHENELSE ≡ λp.λa.λb. p a b

 

Consider: 
 AND TRUE FALSE    →β*   FALSE 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Substitution and Conversions 
Example (Recursive Function): 

FAC ≡ λfac. λn. IFTHENELSE (ISZERO n)

                           (1)  
                           (MULT n (fac(PRED n)))  

Y ≡ λf. (λx. f(x x)) (λx. f(x x))


Consider: 
          (Y FAC) 4     →β*   24 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Theoretical Properties (Pure/Applied)

• it is “a universal language“ (i.e. it has the same   
  computational power than, say, Turing Machines

• there may be calculations that „diverge“ (loop)

• it is Church-Rosser:

 
        (for * be β reductions,  
         αη-conversions) 

• the equality on λ-terms is undecidable.

• the difference between “Pure” and “Applied” irrelevant

The untyped λ-calculus



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

  
Foundations:


Typed λ-Terms 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
Motivation: 

• a term - language for representing maths  
   (with quantifiers, integrals, limits and stuff -  
   thus: variables with binding.)  
   in a logic [seminal paper by Church in 1940]

• no divergence admissible 
  [what would a „divergent term“ mean  in a logic ?]

• equality on terms decidable

• turned out to be easy to implement.



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
Idea: 

• we use an applied λ-calculus 
  (and constant symbols will be subtly    
  different from variables in the typed λ)

• we introduce the syntactic category of types

• we require all „legal“ terms to be typed,  
  i.e. an association of a term to a type  
  according to typing rules must be possible.

• Typed terms were defined inductively.



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
(Applied) λ-terms T  
are built (inductively) over:


• V, a set of “variable symbols”

• C, a set of “constant symbols”

• λV. T, a term construction called 
“λ−abstraction” ,


• T T , a term construction called 
“application“



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
Types (1): 


• We assume a set of type constructors χ with 
  symbols like bool, nat, int, _list, _set, _⇒_, ... 


• We assume a set of type variables TV for  α,β,γ…

• The set of types τ is inductively defined:  
        τ ::=  TV |  χ(τ 1,..., τ n) 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
Types (2): 

• We assume a set of type constructors χ with 
  symbols like bool, nat, int, _list, _set, _⇒_, ... 

• For type constructors (and constant symbols),

  we will allow infix/circumfix notation:  
 
  we will write:


nat                 for           nat() 
bool               for           bool()

nat list	 	 for       (list_)(nat)


    bool ⇒ nat  	 for 	        (_⇒_)(bool, nat)



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus

Types (3): 

• We assume constant environment which  
  assigns each constant symbol a type: 
   Σ :: C ↦ τ 

• We assume a variable-environment which  
  assigns to each variable symbol a type:  
        Γ :: V ↦ τ  
              (we write Γ = {a↦τ1, b↦τ2, c↦τ3 …}) 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus

Types (4): 

• A type judgement stating that a term  
  t has type τ in environments Σ and Γ: 

	 	      Σ, Γ ⊢  t :: τ    

• ... and a set of inductive type inference 
   rules establishing type judgements.




1/4/21 B. Wolff  -  M1-PIA λ-Calculus

• Type Inferences:


The typed λ-calculus



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
• Note that constant symbols where treated     
  slightly different than variable symbols:


• constant symbols may be instantiated 
  (the type variables may be substituted via    ) 

• a constant symbol may therefore have  
  different types in a term.



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Typed λ-calculus 
•  We assume 

  
   Σ = {0 ↦ nat, 1 ↦ nat, 2 ↦ nat, 3 ↦ nat,  
              Suc _ ↦ nat⇒nat,  _+_  ↦  nat⇒nat⇒nat,  

              _=_ ↦ α⇒α⇒bool, True ↦ bool, False ↦ bool}



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Typed λ-calculus 
•  Example:   
    does λx. x + 3 have a type, and which one ? 
      



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Revisions: Typed λ-calculus 
• Examples:  
  Are there variable environments ρ such that the     
  following terms are typable in Σ:    
  (note the infix notation: we write 0 + x for “_+_” 0 x“) 

• (_+_ 0) = (Suc x)

• ((x + y) = (y + x)) = False

• f(_+_ 0) = (λc. g c) x

• _+_ z (_+_ (Suc 0)) =  (0 + f False)

• a + b = (True = c) 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Revisions: β-reduction
• Assume that we want to find typed solutions for  

?X, ?Y, ?Z such that the following terms become 
equivalent modulo α-conversion and β-reduction:


– ?X a                 =?=    a + ?Y

– (λc. g c)            =?=    (λx. ?Y x)

– (λc. ?X c) a       =?=   ?Y

– λa. (λc. X c) a   =?=    (λx. ?Y)


• Note: Variables like ?X, ?Y, ?Z are called schematic 
variables; they play a major role in Isabelles Rule-
Instantiation Mechanism


• Are solutions for schematic variables always unique ?



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
Theoretical Properties (without proof)


• the congruence   
                              t ↔αβη  t’  

    is decidable (reduce to β-normalform, expand to 
   η-longform, rename vars via α in some canonical order)


• Systems like Coq, Isabelle, HOL4 can use  
  (some form of) typed λ-calculi as universal term- 
  representation with binding operators such as  ∀, ∃,  
  sums, integrals, …



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

The typed λ-calculus
Theoretical Properties (without proof)

• The type inference problem is decidable, i.e. for 
 
                     Σ, ?  ⊢  t :: ?? 
 
  there is an algorithm that finds solutions for ? and ?? if existing.

• the difference between “Pure” and “Applied” is relevant for typing 

• λf.(λx.f(x x))(λx.f(x x)) is untypable 

• Beta-reduction is terminating, i.e. there is always an  
  irreducible t’ for any t such that: 
 
                            t →β*  t’



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

  
Application:


Encoding a Simple Logic 
in typed λ-Terms 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Pure in Typed λ-calculus 
• We assume for a minimal logic:


  ΣPure  = {  _ ⟹ _ ↦ prop ⇒ prop ⇒ prop,  

                      _ ≡ _     ↦ α⇒α⇒ prop,


    ⋀_._     ↦ (α⇒prop)⇒ prop}


 
where we will equivalently write  
⋀x. P for ⋀_._(λx. P).         (Quantifier notation) 



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

HOL in Typed λ-calculus 
•  We assume for Higher-Order Logic: 
   ΣHOL = ΣPure ⊎  
                   {  Trueprop ↦ bool ⇒ prop,


    True ↦ bool, False ↦ bool, 
     _∧_  ↦  bool⇒bool⇒bool, _∨_  ↦  bool⇒bool⇒bool,  

     _ ⟶ _ ↦ bool ⇒ bool ⇒ bool, ¬ _ ↦ bool ⇒ bool, 

      _ = _     ↦ α⇒α⇒ bool,


           ∀_._     ↦ (α⇒bool)⇒ bool,   

            ∃_._     ↦ (α⇒bool)⇒ bool }



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Outlook: representing Rules
❑ An Inference System for the equality operator 

(or “HO Equational Logic”) looks like this: 
 
 
 
 
 
 
 
 

 
(Prop is Trueprop and the bar corresponds to A ⟹ B).



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Natural Deduction
❑ With a nicer pretty-printing this looks like this: 

 
 
 
 
 
 
 
 
 

 
(equality on functions as above (“extensional equality”) is  
an HO principle, and it is a principle in a “classical” HOL).



1/4/21 B. Wolff  -  M1-PIA λ-Calculus

Conclusion
● Typed λ-calculus is a rich term language for the 

representation of logics, logical rules, and logical 
derivations (proofs)


● On the basis of typed λ-calculus, 

● Higher-order logic (HOL) is fairly easy to represent

● The differences to first-order logic (FOL)  

are actually tiny.


